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Category Theory



A category consists of,
class of objects, x, y, z
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A category consists of, The category of finite ordinal
class of objects, X, y, z numbers A,
class of morphisms, x — y objects are [0],
composition rule =101k ..
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A category consists of, The category of finite ordinal
class of objects, X, y, z numbers A,
class of morphisms, x — y objects are [0],
composition rule [J=10=1}. ..
S T order preserving maps,
[n] = [m]
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A category consists of, The category of finite ordinal
class of objects, X, y, z numbers A,
class of morphisms, x — y objects are [0],
composition rule [J=10=1}. ..
S T order preserving maps,
[n] = [m]

each object has a

designated identity transitivity, [n] — [m] and

[m] = [p] = [n] = [p]

morphism
each morphism has a such that
specified source and target reflexivity, [n] — [n]
composition is associative source: [n], target: [m]
(Il — [m]) = [p] = [] —
([Im] — [p])
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Why Higher Category?



Examples

For a pointed topological space (X, x), the loop space QX is defined
as the set of all continuous maps,

QX (ST, %) = (X, x)
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Examples

For a pointed topological space (X, x), the loop space QX is defined
as the set of all continuous maps,

QxX: (ST, %) = (X, x)

Intuitively we would like to think of the loop space as a topological
group with the group structure given by the concatenation operation.

Composition of loops is neither associative nor unital nor has an in-
verse. Rather all of these only hold up to homotopy.

The way to make them groups is by moving to higher categories (A
space).
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Two Versions of Simplicial Sets



A simplicial set is a contravariant functor X: A% — Set
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A simplicial set is a contravariant functor X: A% — Set

By the Yoneda lemma, for any sSet X we have,
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Let, C be a small category. Define the nerve of C to be the sSet, NC
as follows:
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Let, C be a small category. Define the nerve of C to be the sSet, NC
as follows:

m NCo = Ob(C) = {e}
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Example

Let, C be a small category. Define the nerve of C to be the sSet, NC
as follows:

m NCy = Ob(C) = {e}
m NCy = Mor(C) = {e — o}
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Let, C be a small category. Define the nerve of C to be the sSet, NC
as follows:

m NCy = Ob(C) = {e}

m NCi = Mor(C) = {e — o}

m NC, = {pair of composable arrows ¢ — ¢ — ¢ inC}
|
|
|
|

NC, = {strings of n composable arrows e — e...e — e inC}

Version |

The nerve functor transforms any category into a sSet.
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But what kind of sSet do we obtain from the nerve functor?
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Theorem ([Seg68])

Let X be a simplicial set that satisfies the Segal condition. Then there
exists a category C such that X is equivalent to NC.
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But what kind of sSet do we obtain from the nerve functor?

Theorem ([Seg68])

Let X be a simplicial set that satisfies the Segal condition. Then there
exists a category C such that X is equivalent to NC.

Definition ([Rez01])

A simplicial set X satisfies the Segal condition if the map

Xni)X1 X...XX1
Xo Xo

is a bijection for n > 2.
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But what kind of sSet do we obtain from the nerve functor?

Theorem ([Seg68])

Let X be a simplicial set that satisfies the Segal condition. Then there
exists a category C such that X is equivalent to NC.

Definition ([Rez01])

A simplicial set X satisfies the Segal condition if the map

Xni>X1 X...XX1
Xo Xo

is a bijection for n > 2.

Example
NC
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The geometric realization is a functor

| — |: sSet — CGHaus
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The geometric realization is a functor

| — |: sSet — CGHaus

Example
A" = {(x0,...,Xn) ER™ |37 1 x;=1,0< x;, <1}
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The geometric realization is a functor

| — |: sSet — CGHaus

A" = {(x0,...,Xn) ER™ |37 1 x;=1,0< x;, <1}

Lemma

The geometric realization of a simplicial set X is

~ 0 n
XI= liny |A")
AN—X
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Definition

The geometric realization functor is left adjoint to the singular com-
plex functor,
=

— %
sSet 1L CGHaus.

1’\3/

Chirantan Mukherjee CSS as a model of Higher Categories March 18, 2022 10/30



Definition

The geometric realization functor is left adjoint to the singular com-
plex functor,

|-
— %
sSet 1L CGHaus.

Version Il

‘{

The singular complex functor transforms any CGHaus into a sSet.
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But what kind of sSet do we obtain from the singular complex functor?
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But what kind of sSet do we obtain from the singular complex functor?
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But what kind of sSet do we obtain from the singular complex functor?

This is always a Kan complex.

A simplicial set X is a Kan complex if every every horn in X has a
filler,

N — X

\[ ; /x
e
-
’
2

An
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Simplicial Space

Version |

The nerve functor transforms any category into a sSet.
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Simplicial Space

Version |

The nerve functor transforms any category into a sSet.

The sSet is levelwise X; = Hom(A!, X).

Version Il

The singular complex functor transforms any CGHaus into a sSet.
The sSet is levelwise X, = Hom(F(n), X).

Definition

A simplicial space X is defined as, Fun(A° x A%, Set).
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Simplicial Space

Version |

The nerve functor transforms any category into a sSet.

The sSet is levelwise X; = Hom(A!, X).

Version Il

The singular complex functor transforms any CGHaus into a sSet.
The sSet is levelwise X, = Hom(F(n), X).

Definition

A simplicial space X is defined as, Fun(A° x A%, Set).

The sS is levelwise X, = Hom(F(n) x A/, X)
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NN

F(n) generates the columns and A/ generates the rows.
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Model Categories



Reedy Fibrant Simplicial Space
A simplicial space X is called Reedy fibrant if Yn > 0, the maps,
Mapss(F(n), X) — Mapss(0F(n), X)

are Kan fibrations.
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Reedy Fibrant Simplicial Space
A simplicial space X is called Reedy fibrant if Yn > 0, the maps,
Mapss(F(n), X) — Mapss(0F(n), X)

are Kan fibrations.

Example

F(n) is a Reedy fibrant simplicial space ¥n > 0.
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Segal Space
Defiiton |

A Reedy fibrant simplicial space X is a Segal space if the maps,

Xn = X4 x - x X
X X

are Kan equivalences vVn > 2.

////7 iF\\\

X?/\X/ \ /\\
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Xg = > X1 X X1
Xo

mapx (X, y, z) = » mapx(x,y) x mapx(y, z)
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X2 = > X1 X X1
Xo
mapx(x,y,z) - » mapx(x,y) x mapx(y. 2)
y
PR
X & > Z

The Segal condition does not guarantee uniqueness but only existence.
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Composition

Comp(f,g) —— mapx(x,y, 2) % mapx (X, 2)

)

A® ——— mapx(x,y) x mapx(y, 2)
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Composition

Comp(f,g) —— mapx(x,y, 2) % mapx (X, 2)

)

A® ——— mapx(x,y) x mapx(y, 2)

Previous Example

y
Comp(f,g) = { o = / 9 eXo|dyo=g tho="f
h:gf

X ————— Z
Since, Comp(f, g) is contractible — h = gf
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Complete Segal Spaces



Example

Let, /(1) be a category with two objects x, y and an invertible morphism
between them,

N(Do ={x.y}
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Let, /(1) be a category with two objects x, y and an invertible morphism
between them,

N(Do ={x.y}

Definition

For a Segal space X, the homotopy category of X, denoted as HoX
is defined as follows:
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Let, /(1) be a category with two objects x, y and an invertible morphism
between them,

N(Do ={x.y}

Definition

For a Segal space X, the homotopy category of X, denoted as HoX
is defined as follows:

objects of HoX are the objects of X, i.e. Xpo
morphism of HoX, Homyyx(X, y) = mo(mapx(x, y))
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Let, /(1) be a category with two objects x, y and an invertible morphism
between them,

N(Do ={x.y}

Definition

For a Segal space X, the homotopy category of X, denoted as HoX
is defined as follows:

objects of HoX are the objects of X, i.e. Xpo
morphism of HoX, Homyyx(X, y) = mo(mapx(x, y))
composition of HoX,

Homuox (X, y) x Homyox(y, z) — Homuox(X, 2)
(If1.19]) = [f o d]
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Complete Segal Space

Definition
For a Segal space X, the space of homotopy equivalences of X,

Xhoequiv 1S @ subspace of Xy such that every map in Xhoequiv C X1 is a
homotopy equivalence.
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Complete Segal Space

Definition

For a Segal space X, the space of homotopy equivalences of X,
Xhoequiv 1S @ subspace of Xy such that every map in Xhoequiv C X1 is a
homotopy equivalence.

Definition

A Segal space X is called a complete Segal space if the map,
So: Xo — Xhoequiv

is an equivalence of spaces.
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Twisted Arrow Construction



Definition (Twisted Arrow Category)

To any category C, we can associate a twisted arrow category,
Tw(C), where,
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Definition (Twisted Arrow Category)

To any category C, we can associate a twisted arrow category,
Tw(C), where,

the objects are morphisms C L DinCforc,De O(C)
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Definition (Twisted Arrow Category)

To any category C, we can associate a twisted arrow category,
Tw(C), where,
the objects are morphisms C L Dincforc,De O(C)
Kk

o cC — C
the morphisms are commutative diagram ;| 19

D(TD/
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Definition (Twisted Arrow Category)

To any category C, we can associate a twisted arrow category,
Tw(C), where,

the objects are morphisms C L DinCforc,De O(C)

. - c -t ¢
the morphisms are commutative diagram ;| 19
D (T D’
¢ . @
and composition of mophisms £l | and
D (h—l D’
c K. k" c C KoK k' ok’ c
#l L are commutative diagram | Lo
DI /! D” D h/ hll D”

h
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If X is a quasi-category, then Tw(X) is a simplicial set, i.e. explicitly,

Tw(X)n = HomsSet((An)OP A", X) = Xon1
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If X is a quasi-category, then Tw(X) is a simplicial set, i.e. explicitly,
Tw(X)n = Homgget((A™)P * A", X) = Xopi

There is a forgetful functor, Tw(X) — X% x X
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Definition

If X is a quasi-category, then Tw(X) is a simplicial set, i.e. explicitly,

Tw(X)n = Homsset((A")® * A", X) = Xoniq

Lemma

There is a forgetful functor, Tw(X) — X% x X

Definition

If X is a simplicial space, Tw(X)mn = Xom+1,n, i.€. concretely,

Tw(F(m))=F(2m-+1)
Tw(A") = A"
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Main Results

If X is a complete Segal space, then Tw(X) is a complete Segal space.
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Main Results

If X is a complete Segal space, then Tw(X) is a complete Segal space.

The main steps are the following

Tw(X) is Reedy fibrant
Tw(X) is a Segal space
Tw(X) is a complete Segal space

The projection map Tw(X) — X° x X is a left fibration.
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Lemma

If X is a Reedy fibrant simplicial space, then Tw(X) is also a Reedy
fibrant simplicial space.
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Lemma

If X is a Reedy fibrant simplicial space, then Tw(X) is also a Reedy
fibrant simplicial space.

Proof Idea:

We analyze Map(oF(n), Tw(X)) and describe it as a colimit of the
space Xo,_1 and X5,_5 to prove

Map(F(n), Tw(X)) — Map(oF(n), Tw(X))

is a Kan fibration.
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If X is a Segal space, then Tw(X) is also a Segal space.
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Lemma

If X is a Segal space, then Tw(X) is also a Segal space.

Proof Idea:

For n= 2,

kT T
X3 —— Xi
T
= =" "1rq
X1 X X1 X X1
Xo  Xo

we obtain Tw(X), — Tw(X); x  Tw(X)s.
Tv

w(X)o
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Lemma

If X is a complete Segal space, then Tw(X) is a complete Segal space.
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Lemma

If X is a complete Segal space, then Tw(X) is a complete Segal space.

Proof Idea:

m Tw(HoX) ~ HoTw(X)
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Lemma

If X is a complete Segal space, then Tw(X) is a complete Segal space.

Proof Idea:
m Tw(HoX) ~ HoTw(X)
m Pullback squares,

w(X)o ——— TwW(X)noequiv — Tw(X)1
N

d 1 - d

O = O op
Xop X Xo — thequiv X Xhoequiv e X1 X X1

we obtain, Tw(X)o — Tw(X )hoequiv iS @n equivalence of spaces.
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The projection map Tw(X) — X° x X is a left fibration.
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The projection map Tw(X) — X° x X is a left fibration.

Proof Idea:
m The map Tw(X) — X x X is a Reedy fibration.
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The projection map Tw(X) — X° x X is a left fibration.

Proof Idea:

m The map Tw(X) — X x X is a Reedy fibration.

m If X is a Segal space then the following diagram is a homotopy
pullback square,

Tw(X)y —— Tw(X)o
| - |

X10p><X1 — XngXo
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